We have been experiencing very high demand for our products over the past three months. we are working hard to meet the increased demand. All orders are fullfilled in the order received.

0

Your Cart is Empty

Relay-Controlled Volume - The Ultimate Solution for Analog Audio

by John Siau April 11, 2018 7 min read

Relay-Controlled Volume - The Ultimate Solution for Analog Audio


Benchmark has introduced the new HPA4 headphone/line amplifier with four 256-step relay-controlled attenuators and four 16-step relay-controlled boost amplifiers. Together these form two fully-independent, fully-balanced stereo volume controls. One volume control is dedicated to the line output and one is dedicated to the headphone output. Each has a +15 dB to -122 dB range in 0.5 dB steps. The lowest step provides a full mute. The volume controls feature high-precision metal film resistors, gold contact relays, and fully buffered inputs and outputs. 

Transparency

Our goal was to produce an analog volume control with the highest achievable transparency. We wanted to be able to place this volume control in front of our AHB2 power amplifier or in front of our THX-888 headphone amplifier board without diminishing the performance of either device. Our volume control would need to have lower distortion and lower noise than either of these amplifiers. Given the extraordinary performance of these THX-AAA amplifiers, this would not be an easy task!

Required Specifications

The AHB2 power amplifier and THX-888 headphone amplifier have similar specifications; they are virtually noise free (SNR > 132 dB) and distortion free (THD < -120 dB). Our new analog-to-analog volume control would need to exceed these specifications to avoid being a weak link in the audio chain. As we looked at available solutions, it became clear that we would need to design something better.

Variable Resistors - Noise, Distortion, Tracking Errors

The most basic analog-to-analog volume controls use variable resistors and these tend to fall well short of the required performance. The resistive elements introduce distortion due to changes in resistance caused by instantaneous heating and cooling at audio frequencies. This heating can be especially problematic where the wiper contacts the resistive element and where the element is terminated at each end. These thermally induced distortion effects can be reduced by decreasing the power dissipated by the resistor, but a reduction in power always reduces the SNR. However, noise and distortion are not the only problems. Stereo volume controls require a matched pair of variable resistors. Matching errors tend to introduce significant left-right balance issues at low volume settings.

Integrated Chip Volume Controls - Noise and Distortion

There are a variety of integrated volume control chips that are appropriate for low-cost consumer audio equipment. Better chips have found their way into many hi-fi products, but they are not really appropriate for high-end applications. These chips include voltage-control amplifiers (VCA), analog multipliers, or multiplying D/A converters. These solutions offer low cost, remote control, and often have excellent left-right tracking. Unfortunately they lack transparency. None of the available chips are capable of meeting either of our noise or distortion requirements.

Digital Gain Controls

Digital DSP multipliers can achieve near-perfect transparency if enough of the output bits are preserved and delivered to a D/A converter with sufficient resolution. Any significant volume reduction would place difficult demands on the SNR performance of the D/A converter. In our analog-to-analog application, an A/D converter would need to be added at the front end. Any significant volume boost would place difficult demands on the SNR performance of the A/D converter. In any practical system, the converters are the performance limitation. This is why we provide analog attenuators at the output of all Benchmark DAC1, DAC2, and DAC3 converters. The attenuators match the nominal output level of the DAC to the downstream device (usually a power amplifier). This matching minimizes the use of the digital volume control. In our analog-to-analog application, the cascaded A/D-D/A would add excessive THD and noise.

Relay-Controlled Attenuators

In theory, switch-controlled and relay-controlled resistor dividers can provide near-perfect performance. We purchased a number of these and were surprised to find that all had design problems that were limiting their perfomance. In most cases, the impedances were too high to achieve our required noise specifications. When we replaced the resistors with lower values, other problems appeared. The lower impedances exposed crosstalk problems that were caused by circuit board layout issues. They also tended to overload upstream devices, causing distortion. All of the units we tested produced some pops and clicks in the output audio as the volume was adjusted. Clearly we would need to take a different approach if we were going to use relays or switches.

Benchmark's 256-step Active Volume Control

We settled on a very low impedance 16-step gain stage that feeds a very low impedance 256-step attenuator. Each channel uses 12 DPDT gold-contact relays and 64 high-precision resistors. All stages are fully buffered and fully balanced. The balanced design provides a 3 dB SNR improvement while increasing the immunity to interfering noise sources. The buffers provide high impedance inputs and low impedance outputs. This means that the Benchmark gain control places very little load on upstream devices while providing ample drive for downstream devices. The buffering also allows the use of very low resistance values and this reduces the thermal noise produced by the attenuator.

Precise Make-Before-Break Relay Timing

We eliminated the usual pops and clicks that are produced by relay-controlled attenuators. To do this, we chose to drive the relays with an FPGA instead of a microprocessor. The FPGA allows very precise timing of every relay closure. We use very fast make-before-break contact closures to prevent gain overshoot transients while the relays are switching. Due to this precise timing, the Benchmark attenuator and gain stages can be rapidly adjusted without producing pops, clicks, or zipper noise in the output audio.

Resistor Selection

Resistors can cause distortion when resistance values change due to instantaneous heating at audio frequencies. To eliminate this potential problem we use precision thin-film resistors that have been selected for their excellent temperature coefficients. The resistors are also physically larger than what would be necessary to handle the power dissipation. The larger package size reduces the thermal effects.

The "Fully Passive" Myth

Most people understand that active buffers create some noise and distortion. But many people falsely assume that these active components are the only source of noise and distortion in an audio circuit. The truth is that passive components are usually the primary source of noise and distortion in an audio circuit!

In a search for perfection, many audiophiles have bought into the "fully passive" myth. I suspect that this explains why most relay attenuators are fully passive. On the surface, "fully passive" sounds like a good idea.

Low Noise Requires Low impedances

What many audiophiles don't realize is that a single resistor can create far more noise than a good active buffer. For example, an LME49860 opamp produces about the same noise as a 440-Ohm resistor. This means that the LME49860 is 13.6 dB quieter than the thermal noise produced by a single 10 k resistor! Buffers can allow the use of much lower impedances in an attenuator's resistor ladder network. When the impedances are reduced, an active design can be far quieter than a fully-passive design. Low-noise can only be achieved when resistors have very low impedances and signal levels are kept high.

Passive Designs Force a Trade Off Between Noise and Distortion

If the impedances are reduced in an fully-passive attenuator design, the noise can be reduced but distortion will increase. This distortion is caused by an overloading of the upstream device. When an audio output is overloaded, distortion increases. Contrary to popular myth, distortion can be reduced by adding high-quality active buffers.

Passive Designs Can Cause Frequency Response Problems

A third problem with passive attenuators is that they may not provide enough drive for downstream devices. Cable capacitance and input capacitance can cause a high-frequency roll off. Worse yet, the frequency response may change as the volume is adjusted with a passive attenuator. Low output impedance is important for maintaining a wide bandwidth. Output buffers are essential for delivering a predictable frequency response.

Noise and Distortion Analysis of Fully-Passive Attenuators

In the fully-passive designs we examined, the thermal noise produced by high impedance resistors exceeded what could have been achieved with a well-designed fully-buffered design. Furthermore, the loading imposed by the passive attenuators tended to cause distortion in upstream devices. It was clear that buffers would be required in our design.

Buffer Selection

We chose the LME49860 opamps because of their outstanding THD and IMD performance, their wide voltage swing, and their ability to drive heavy loads. The 16-step gain boost ladder sits inside the input buffer's feedback loop. A second buffer drives the 256-step attenuator input, while a third buffer drives the output. Each buffer is actually a balanced pair of buffers and the entire signal path is fully balanced. The second buffer also serves as a precision fully-balanced differential amplifier. The differential amplifier delivers a voltage-balanced signal to the attenuator stage. The differential amplifier removes common-mode interference while maximizing the use of the voltage headroom in the 256-step attenuator.

256 Steps, 0.5 dB Step Size

It is very unusual to see a stepped attenuator with more than 64 steps. The reason for this is that the resistor precision must increase dramatically as the number of steps increase. To achieve a 256-step attenuator with consistent 0.5 dB steps, we needed to use very high precision 0.1% resistors. If we had used 1% resistors, the step sizes would have been inconsistent and there would have been variations in the left-right balance as the volume was adjusted.

Near-Perfect Stereo Tracking

The 0.1 % resistors maintain a precise left-right balance over the entire 128 dB range of the Benchmark volume control. The gain and attenuator stages have a dual mono construction and this allows independent adjustment of the left and right channels. We leverage this feature to provide a balance control that tracks over the entire gain range.

Specifications

Measured from balanced inputs to balanced outputs on the HPA4 Line Amplifier:

  • THD < -125 dB (0.00006%)
  • SNR > 135 dB, unweighted, 20-20 kHz
  • SNR > 137 dB, A-weighted
  • Frequency Response - 0.003 dB at 10 Hz, -0.001 dB at 20 kHz
  • - 3 dB Bandwidth exceeds 0.1 Hz to 500 kHz
  • Output Impedance 60 Ohms
  • Output Noise < 1.9 uV at Unity Gain, 20-20 kHz
  • Maximum Input and Output Voltage, 20 Vrms (+28 dBu)
  • Crosstalk < -133 dB @ 1 kHz, -116 dB @ 10 kHz

HPA4 Features

  • 256-Step Stereo Volume Control - Line Output
  • 256-Step Stereo Volume Control - Headphone Output
  • Relay Selection of Inputs
  • Two Stereo Balanced Line Inputs
  • Two Stereo Unbalanced Line Inputs
  • One Stereo Balanced Line Output
  • One Balanced Mono Sum Output
  • One Balanced THX-888 XLR4 Headphone Output
  • One Unbalanced THX-888 TRS Headphone Output
  • Independent Control of Headphone and Line Outputs
  • Balance Control
  • IR Remote Control
  • Color Touch Screen
  • Two 12 Volt Trigger Ports


Also in Audio Application Notes

Audio Myth - "Damping Factor Isn't Much of a Factor"
Audio Myth - "Damping Factor Isn't Much of a Factor"

by John Siau June 04, 2020 13 min read

Myth - "Damping Factor Isn't Much of a Factor"

Myth - "A Damping Factor of 10 is High Enough"

Myth - "All Amplifiers Have a High-Enough Damping Factor"

Where did these Myths Originate?

These myths seem to trace back to a well-know paper written by Dick Pierce. His analysis shows that  a damping factor of 10 is virtually indistinguishable from a damping factor of 10,000 when it comes to damping the motion of a loudspeaker cone. This analysis has been examined and repeated in many more recent articles, such as a well-written post on Audiofrog.com by Andy Wehmeyer. Articles such as these are often cited as evidence that amplifier damping factor doesn't matter. The mathematical analyses are correct, but the conclusions are incomplete and misleading!

Read More
COVID-19 ... Don't just survive!
COVID-19 ... Don't just survive!

by John Siau March 23, 2020 6 min read

A Week Ago, Life was Normal

How fast things can change!

It is March 23, 2020 and we are currently battling the worldwide COVID-19 pandemic.

This application note will be a departure from normal. I will make a few observations about the current situation and then look at the nuts and bolts of how we reconstructed our operations in less than 48 hours. Benchmark is 100% operational, but nothing looks the same as it did last week.

- John Siau

Read More
Rules of Thumb for Music and Audio
Rules of Thumb for Music and Audio

by John Siau April 01, 2019 15 min read

As an engineer I like to use "rules of thumb" to make quick estimates that help to explain the physical world around me.

These rules of thumb are easy-to-remember approximations that eliminate the need for complicated and needlessly precise calculations.

If you feel discombobulated by the complexities of high school physics, there is hope! I encourage you to step back and take a fresh approach.

If you learn a few simple rules of thumb, you can unravel mysteries of the physical world, amaze your friends, and yourself.

In this paper I will present 15 simple rules that I find useful when working with music and audio.

- John Siau

Read More