When is a DA not a DA?

January 01, 1997

When is a DA not a DA?

By Allen H. Burdick


Let's face it, an Audio Distribution Amplifier (DA) is not absolutely necessary for the distribution of audio! You can daisy chain your audio from input to input these days, generally with minimal loading on the source. However, what happens if a piece of equipment on the chain fails, or someone inadvertently cuts the audio pair, or you wish to remove a piece of equipment while on the air? Well, of course, that's why we install DAs in the first place. The DA is an insurance policy.  But like any insurance policy, you'd better be sure of your coverage before you need to make a claim. To examine our insurance coverage, let's review the basic criteria for good audio transmission.


In a historic paper to the Audio Engineering Society, presented in 1980, Richard Hess of National Tele-Consultants, then with ABC-TV, outlined the need to move from the 600 ohm power matched interconnect system that we inherited from the Bell Labs, to a 60 ohm voltage source interconnect for runs up to 3000' in length. This provides an increase in interconnect bandwidth of 5 times what the 600 ohm system would have under the same circumstances. It also provides a much lower noise pickup and reduces the quiescent power drain and heat generated in the equipment. Most equipment manufacturers have now subscribed to that understanding with the resultant improvement in interconnect bandwidth. See "A Clean Audio Installation Guide™" tech note for more information.

The next issue is the type of amplifier output needed. Most networks will not use audio distribution amplifiers that have multiple output drivers. Rather, they require DAs with a single output amplifier stage. The reason for not using multiple output drivers is the possibility of having the "On Air" output fail while monitoring a different output, and thus not being aware of the loss.

Mr. Hess also noted, in his paper, the requirement for a DA to be able to operate with up to 1/3 of its outputs in a shorted condition. This is a very important concept. In facilities, change is constant. New equipment is added, old equipment and cable runs are removed. The insurance policy must be robust, and be able to cover the unexpected.

Technical Requirements

These three requirements define the output stage design of an audio distribution amplifier. The output stage must be a single amplifier with "build-out" resistors that create the desired drive impedance. In this case, the use of 30 ohm resistors from two amplifiers is necessary to create the 60 ohm balanced output. If we have, say, ten balanced outputs on our distribution amplifier, then with three of those outputs shorted the amplifiers must be able to drive two 10 ohm loads, and still deliver audio to the other destinations. Remember, this is our insurance policy and it can't let us down during an emergency. The implication is obvious. To deliver full output into a 10 ohm load we need a small power amplifier, i.e. 10 watts per channel, relative to ground, 40 watts balanced.

Unfortunately, many of the devices being passed off as an insurance policy cannot survive this condition. Often, they are light weight designs that were created in the days of the 600 ohm power matched thinking, and simply had their output resistors changed from 300 ohms to 30 ohms. In other cases, while the amplifier itself might be able to drive a 10 ohm load, the power supply will not provide enough current to the amplifier under short circuit conditions.

Most unfortunate of all is the facility where the staff thinks they have an insurance policy, only to find in an emergency that they did not read the fine print and the coverage wasn't really available. Caveat emptor!



Also in Audio Application Notes

Balanced vs. Unbalanced Analog Interfaces
Balanced vs. Unbalanced Analog Interfaces

April 23, 2018

If you look at the back of any Benchmark product, you will find balanced XLR analog-audio connectors. As a convenience, we also provide unbalanced RCA connectors on many of our products. In all cases, the balanced interfaces will provide better performance.

We build our unbalanced interfaces to the same high standards as our balanced interfaces, but the laws of physics dictate that the balanced interfaces will provide better noise performance.

This application note explains the advantages of balanced interfaces.

Read More
Relay-Controlled Volume - The Ultimate Solution for Analog Audio
Relay-Controlled Volume - The Ultimate Solution for Analog Audio

April 11, 2018

Benchmark has introduced a new analog-to-analog volume control circuit that features a 256-step relay-controlled attenuator and a 16-step relay-controlled boost amplifier. The volume control has a +15 dB to -122 dB range in 0.5 dB steps and is a key component in the HPA4 Headphone / Line Amplifier.

Our goal was to produce an analog-to-analog volume control with the highest achievable transparency. We wanted to be able to place this volume control in front of our AHB2 power amplifier or in front of our THX-888 headphone amplifier board without diminishing the performance of either device. Our volume control would need to have lower distortion and lower noise than either of these amplifiers. Given the extraordinary performance of these THX-AAA amplifiers, this would not be an easy task!

This application note discusses the engineering decisions that went into the development of this new analog volume control circuit. The end result is a fully buffered volume control with a signal-to-noise ratio that exceeds 135 dB. THD measures better than the -125 dB (0.00006%) limits of our test equipment.

Read More
Laboratory Use of the Benchmark AHB2 Power Amplifier
Laboratory Use of the Benchmark AHB2 Power Amplifier

January 26, 2018

SEAS, a well-known manufacturer of high-quality loudspeakers, selected the Benchmark AHB2 as a key component for use in testing loudspeakers. They created an innovative test system that measures loudspeaker motor strength and moving mass with higher accuracy than previous methods. This new measurement system was documented in the December 2017 Journal of the Audio Engineering Society.

According to the AES paper, the SEAS team selected the Benchmark AHB2 for the following reasons:

"A Benchmark AHB2 amplifier is used, which has excellent signal-to-noise ratio and bandwidth, low output impedance, and is suitable for laboratory use (with advanced overload protection)."

The AHB2 was designed to outperform all competing power amplifiers in terms of noise and distortion. The result is an amplifier with unrivaled transparency.

Our goal was to create the ultimate amplifier for the enjoyment of music. It is nice to know that the AHB2 is also being used to test new and improved loudspeakers!

Read More