*** There will be a 6% price increase effective June 15. Buy now and save. Free shipping within the USA for all orders over $700. Our offices will be closed on Memorial Day (Monday May 29).

0

Your Cart is Empty

When is a DA not a DA?

by Benchmark Media Systems January 01, 1997 3 min read

When is a DA not a DA?

By Allen H. Burdick

Introduction

Let's face it, an Audio Distribution Amplifier (DA) is not absolutely necessary for the distribution of audio! You can daisy chain your audio from input to input these days, generally with minimal loading on the source. However, what happens if a piece of equipment on the chain fails, or someone inadvertently cuts the audio pair, or you wish to remove a piece of equipment while on the air? Well, of course, that's why we install DAs in the first place. The DA is an insurance policy.  But like any insurance policy, you'd better be sure of your coverage before you need to make a claim. To examine our insurance coverage, let's review the basic criteria for good audio transmission.

History

In a historic paper to the Audio Engineering Society, presented in 1980, Richard Hess of National Tele-Consultants, then with ABC-TV, outlined the need to move from the 600 ohm power matched interconnect system that we inherited from the Bell Labs, to a 60 ohm voltage source interconnect for runs up to 3000' in length. This provides an increase in interconnect bandwidth of 5 times what the 600 ohm system would have under the same circumstances. It also provides a much lower noise pickup and reduces the quiescent power drain and heat generated in the equipment. Most equipment manufacturers have now subscribed to that understanding with the resultant improvement in interconnect bandwidth. See "A Clean Audio Installation Guide™" tech note for more information.

The next issue is the type of amplifier output needed. Most networks will not use audio distribution amplifiers that have multiple output drivers. Rather, they require DAs with a single output amplifier stage. The reason for not using multiple output drivers is the possibility of having the "On Air" output fail while monitoring a different output, and thus not being aware of the loss.

Mr. Hess also noted, in his paper, the requirement for a DA to be able to operate with up to 1/3 of its outputs in a shorted condition. This is a very important concept. In facilities, change is constant. New equipment is added, old equipment and cable runs are removed. The insurance policy must be robust, and be able to cover the unexpected.

Technical Requirements

These three requirements define the output stage design of an audio distribution amplifier. The output stage must be a single amplifier with "build-out" resistors that create the desired drive impedance. In this case, the use of 30 ohm resistors from two amplifiers is necessary to create the 60 ohm balanced output. If we have, say, ten balanced outputs on our distribution amplifier, then with three of those outputs shorted the amplifiers must be able to drive two 10 ohm loads, and still deliver audio to the other destinations. Remember, this is our insurance policy and it can't let us down during an emergency. The implication is obvious. To deliver full output into a 10 ohm load we need a small power amplifier, i.e. 10 watts per channel, relative to ground, 40 watts balanced.

Unfortunately, many of the devices being passed off as an insurance policy cannot survive this condition. Often, they are light weight designs that were created in the days of the 600 ohm power matched thinking, and simply had their output resistors changed from 300 ohms to 30 ohms. In other cases, while the amplifier itself might be able to drive a 10 ohm load, the power supply will not provide enough current to the amplifier under short circuit conditions.

Most unfortunate of all is the facility where the staff thinks they have an insurance policy, only to find in an emergency that they did not read the fine print and the coverage wasn't really available. Caveat emptor!

 

 



Also in Audio Application Notes

System Performance Calculations
System Performance Calculations

by John Siau March 02, 2023 13 min read

If an audio system is composed of multiple components, we may have detailed specifications for each component, but we will not know the performance of the combined system without doing some calculations. You may have questions such as these:

  • Will my audio system produce audible noise?
  • Will my audio system produce audible distortion?
  • How will my audio components work together as a system?
  • How loud will my audio system play?

Use Benchmark's online audio calculators to find answers!

For example, if we know the output power of an amplifier, as well as the sensitivity and impedance of our loudspeakers, we can calculate the maximum sound pressure level that our system can produce.

PEAK SPL CALCULATOR
Speaker Sensitivity: dB SPL (2.83 V, 1 M)
Amplifier Power Per Channel into 8 Ohms: Watts
RESULTS
Peak Output Level (at typical listening position): dB SPL

 

This application note provides interactive examples that help to answer the questions listed above.

Read More
Audio Calculators
Audio Calculators

by John Siau November 29, 2022 1 min read

We have added an "Audio Calculators" section to our webpage. Click "Calculators" on the top menu to see more like these:

 

THD % to dB Converter
% THD
RESULTS
dB THD
THD dB to % Converter
dB THD
RESULTS
% THD
Read More
SECRETS Q&A WITH JOHN SIAU OF BENCHMARK MEDIA SYSTEMS
SECRETS Q&A WITH JOHN SIAU OF BENCHMARK MEDIA SYSTEMS

by Benchmark Media Systems January 07, 2022 1 min read

Secrets contributor Sumit Chawla recently caught up with Benchmark’s VP and Chief Designer, John Siau to get a little more in-depth on several subjects.

John Siau, VP Engineering, Benchmark Media Systems, Inc.

Q: "Benchmark is one of the few companies that publishes an extensive set of measurements, but you also balance that with subjective testing. Can you talk about the equipment, the listening room, and the process for subjective testing?"

Q: "Was there ever a time where you learned something from a subjective test that was not captured by measurements?"

Q: "You conducted some listening tests to determine whether distortion in the “First Watt” was audible. What test material did you use for this, and what did you find?"

Q: "The AHB2 amplifier incorporates THX Audio Achromatic Amplifier technology. When and how did the partnership with THX come about?"

Q: "Linear power supplies have been and remain quite popular in high-end devices. You favor switch-mode power supplies. When and why did you make this switch?"

... and more!

Read the full interview here 

Read More