Will the HPA2 Drive My Headphones?

February 04, 2016

Will the HPA2 Drive My Headphones?

Will the HPA2™ Drive My Headphones?

Benchmark DAC1 and DAC2 converters are equipped with Benchmark’s HPA2™ headphone power amplifier. This is a high-current design with very low output impedance (less than 0.1 Ohms). It is capable of driving a wide variety of headphones while achieving extraordinarily low distortion. The full rated performance of the DAC1 is achieved at the headphone jack while driving two sets of headphones. THD+N is less than 0.0003% under full load. The HPA2™ may be the quietest and cleanest headphone amplifier available.

The HPA2™ also has sufficient output level to drive any headphone well beyond normal listening levels. For this reason, the HPA2™ in the DAC1 USB is equipped with gain programming jumpers that can be used to reduce the gain by 10 dB. We recommend using the 10 dB attenuation setting with the Sennheiser headphones.

The HPA2™ in the DAC1 PRE, DAC1 HDR, DAC2 HGC, DAC2 D, and DAC2 DX converters has an additional 20 dB attenuation setting. This setting is recommended for high-sensitivity headphones. Headphones having a low input impedance (30 to 60 Ohms) often have high sensitivity and we recommend the 20 dB attenuation setting for these headphones.

The attenuation is inserted before the HPA2™ headphone amplifier. This attenuator location keeps the output impedance of the HPA2™ constant and very near 0 Ohms. External attenuators should never be inserted after a headphone amplifier as this would change the output impedance.

Proper attenuator settings are important for maximizing the SNR of the headphone monitoring system. With proper settings, the full performance of the DAC2 can be delivered to the headphones for critical monitoring tasks, or maximum musical enjoyment.

When the headphone attenuation jumpers are set properly, a normal listening level will be achieved between the 10 o'clock and 2 o'clock volume control positions. If a normal listening level is achieved below a 10 o’clock volume-control position, the headphone gain is too high, and the attenuation should be increased. If the level is too low at a 2 o-clock volumecontrol position, the headphone gain is too low, and the attenuation should be decreased.

The 0-Ohm output impedance provides outstanding control of the headphone drivers. This improves bass damping, reduces distortion, and flattens the frequency response.

DAC1 and DAC2 converter families were designed from the ground up to be headphone amplifiers with line outputs. The large power supplies in the DAC1 and DAC2 converters are necessary to support the demanding power requirements of the HPA2™ headphone power amplifier.

Additional reading:

More information on headphones and headphone amplifiers can be found here.



Also in Audio Application Notes

Liquid error (line 252): internal
Rules of Thumb for Music and Audio

April 01, 2019

As an engineer I like to use "rules of thumb" to make quick estimates that help to explain the physical world around me.

These rules of thumb are easy-to-remember approximations that eliminate the need for complicated and needlessly precise calculations.

If you feel discombobulated by the complexities of high school physics, there is hope! I encourage you to step back and take a fresh approach.

If you learn a few simple rules of thumb, you can unravel mysteries of the physical world, amaze your friends, and yourself.

In this paper I will present 15 simple rules that I find useful when working with music and audio.

- John Siau

Read More
Feed-Forward Error Correction
Feed-Forward Error Correction

October 11, 2018

The Benchmark AHB2 power amplifier and HPA4 headphone amplifier both feature feed-forward error correction. This correction system is an important subset of the patented THX-AAA™ (Achromatic Audio Amplifier) technology. It is one of the systems that keeps these Benchmark amplifiers virtually distortion free when driving heavy loads. It is also the reason that these amplifiers can support 500 kHz bandwidths without risk of instability when driving reactive loads.

This paper explains the differences between feedback and feed-forward systems. As you read this paper, you will discover that you already understand the benefits of feed-forward correction because you use it instinctively to improve a feedback system commonly found in your automobile. If feed-forward correction can improve your driving experience, it may also improve your listening experience!

Read More
Balanced vs. Unbalanced Analog Interfaces
Balanced vs. Unbalanced Analog Interfaces

April 23, 2018

If you look at the back of any Benchmark product, you will find balanced XLR analog-audio connectors. As a convenience, we also provide unbalanced RCA connectors on many of our products. In all cases, the balanced interfaces will provide better performance.

We build our unbalanced interfaces to the same high standards as our balanced interfaces, but the laws of physics dictate that the balanced interfaces will provide better noise performance.

This application note explains the advantages of balanced interfaces.

Read More