*** There will be a 6% price increase effective June 15. Buy now and save. Free shipping within the USA for all orders over $700.

0

Your Cart is Empty

The PLL in your D/A Can Taint A/B Listening Tests!

by John Siau June 03, 2016 4 min read

The PLL in your D/A Can Taint A/B Listening Tests!

A/B and A/B/X listening tests are important methods of comparing two audio sources or two audio components. In the studio an engineer may want to switch an effect or EQ setting on and off to decide if it contributes positively to a mix. Hi-Fi enthusiasts may wish to compare audio components, signal sources and interconnects. The DAC1 and DAC2 converters have input selector switches that allow fast and easy switching between signal sources. Before attempting to conduct these tests, it is important to understand how these converters and their switches work. A/B tests using the DAC1 input selector can be very misleading. In contrast, A/B testing using the input selector on the DAC2 will produce reliable results. This application note provides guidance for conducting reliable A/B or A/B/X listening tests with your D/A converter.

A/B Tests With the DAC1 - Caution!

The DAC1 converters allow instantaneous switching between digital sources but the audio unmutes before the low-jitter UltraLock PLL (phase locked loop) has fully settled. When we created the DAC1, some of our professional customers needed a D/A converter with a very short lock time. To this day, the DAC1 has one of the fastest lock times in the industry. Audio begins playing only a few milliseconds after a digital signal is applied, and this happens before the clock system has fully settled. This can cause a very slight pitch shift in the first 250 ms of playback. This pitch shift is imperceptible when switching between different musical selections, but it can become perceptible when switching between two identical (or nearly identical) signal sources. While it is convenient to run A/B tests with the input selectors on the DAC1, we do not recommend this! We strongly recommend switching the source within a computer, an upstream digital console, or DAW. The upstream switching will produce a continuous data stream to the DAC1 and the PLL will not be transitioning between unlocked and locked states.

False Results!

There have been a number of anecdotal accounts of optical and coaxial cables producing differing results when a DAC1 input selector switch is used to switch between two cables that are receiving identical data. Usually this is done by simultaneously feeding the DAC1 from two outputs on a disk player. Conducting an A/B test in this manner will give erroneous results with the DAC1 but not with the DAC2. The DAC1 unmutes just before the end of the pitch shift. The DAC2 unmutes just after the end of the pitch shift.

Pitch-Shift Artifact - The Cause of False Results

If you use the DAC1 input selector to conduct an A/B comparison, the very first thing you hear after the switch is a pitch shift that persists for about 250 milliseconds. It is a very short event, but your ears will detect the momentary change in pitch and this will color your opinion of what you hear after the pitch shift. It is a really interesting psychoacoustical effect and I don't know that anyone has really done any research on this. Nevertheless, the effect is real and it is easily reproducible. With two identical inputs to the DAC1, one will be perceived as being brighter than the other. For this reason, we do not recommend using the DAC1 input selector for A/B comparisons (use the console or DAW instead). Other brands of D/A converters have similar pitch-shift artifacts, but the magnitude and duration of these artifacts will vary. It is probably safe to say that most D/A converters will have pitch-shift artifacts that can produce false results in A/B tests (if D/A is switched between two different digital inputs).

A/B Tests With the DAC2 - Slightly Longer Mute Time

A slightly longer mute delay on the DAC2 prevents the erroneous results of A/B tests that are tainted by the pitch-shift transient of the PLL. The trade-off is that there is a momentary silence when switching. This muting can be avoided by switching within the DAW or digital console, because these devices normally provide a continuous digital data stream while switching between signal sources.

A/B/X Testing

Remote Control for QSC ABX Test SetIn an A/B test, signal source A is simply compared to signal source B. In an A/B/X test, the listener has access to A and B and an unknown X which is either A or B. On each trial, the listener must determine if X is A or B. The listener is free to switch between A, B, and X as many times as necessary before making a decision about X. X is randomly selected for each trial and the system keeps score to determine if the listener actually heard a difference. Rigorous A/B/X tests can scientifically confirm that a listener can hear a difference between two sources. We use these types of tests in our listening room here at Benchmark. Our listening room is equipped with a QSC ABX test set, DAW ABX testing, and software-based ABX testing. We also have an A/B system that uses multiple DAC2 converters. The photo shows the remote control for the QSC ABX system in Benchmark's listening room.

Rigorous A/B/X tests can also be conducted with specialized software running on a Windows, Mac, or Linux computer. Lactinato ABX/Shootout-er is a free software-based ABX system that operates across each of these three major operating systems. Other similar software solutions can be found with this search.

Avoid PLL Lock and Unlock Events when Conducting Listening Tests

The PLL lock times on the DAC1 and DAC2 are among the fastest in the industry. Unfortunately, low-jitter phase locked loops cannot lock instantaneously. A/B tests should be conducted in a way that prevents the locking and unlocking of a PLL. In general, D/A converters will produce some pitch-shift anomalies when switching between two different digital sources. The DAC2 mutes for about 500 milliseconds to eliminate the pitch-shift transient.  All of these effects can be eliminated by switching the audio source within a computer program or a digital mixer (instead of using the input switch on the D/A converter).



Also in Audio Application Notes

ChatGPT Reviews the AHB2 and Includes Listening Impressions!
ChatGPT Reviews the AHB2 and Includes Listening Impressions!

by John Siau June 02, 2023 2 min read

What happens when you ask ChatGPT to write a review?

I asked ChatGPT to review the Benchmark AHB2, and I was shocked at the results!

It turns out that ChatGPT wrote a review by gleaning information from the many publicly available reviews of the AHB2. I recognized phases and sequences of words that had appeared in prior reviews, and yet the text was new, original, and well written. The ChatGPT review seemed to summarize the collective impressions of the reviewers without directly quoting any particular reviewer.

It should be possible to ask ChatGPT to write a review on any well-known product and the results may be an AI-generated review that reflects the collective opinions of many human reviewers.

Try this the next time you a planning to make a purchase online. These AI-generated reviews may be more useful than traditional search results. In essence, the search results are combined into a single well-written review.

It is also possible that ChatGPT is biased to give glowing reviews, so use caution! Try it out and have some fun experimenting with this new technology!

Here is my dialog with ChatGPT:

John Siau:

Write a review of the Benchmark AHB2 complete with listening impressions.

ChatGPT:

Title: Unleashing Sonic Purity: A Review of the Benchmark AHB2 Amplifier

Introduction: The Benchmark AHB2 amplifier has gained a reputation for its exceptional audio performance and unwavering dedication to sonic purity. In this review, we delve into the heart of this powerhouse amplifier, exploring its features, design, and most importantly, the listening impressions it evokes...

Read More
ChatGPT and John Siau Discuss Star-Quad Cables
ChatGPT and John Siau Discuss Star-Quad Cables

by John Siau May 30, 2023 7 min read

Today, Benchmark's John Siau and OpenAI's ChatGPT had a conversation about star-quad cables. It turns out that ChatGPT got quite a few things wrong, but learned quickly when these errors were pointed out by John Siau.

ChatGPT is quick to recognize mistakes, and quick to provide detailed corrections. In each of the first few corrections, additional errors were made. As each of these were pointed out, ChatGPT began to provide accurate information.

 

John Siau:

How do star-quad cables reject interference?

ChatGPT:

Star-quad cables are designed to provide improved rejection of ...

Read More
System Performance Calculations
System Performance Calculations

by John Siau March 02, 2023 13 min read

If an audio system is composed of multiple components, we may have detailed specifications for each component, but we will not know the performance of the combined system without doing some calculations. You may have questions such as these:

  • Will my audio system produce audible noise?
  • Will my audio system produce audible distortion?
  • How will my audio components work together as a system?
  • How loud will my audio system play?

Use Benchmark's online audio calculators to find answers!

For example, if we know the output power of an amplifier, as well as the sensitivity and impedance of our loudspeakers, we can calculate the maximum sound pressure level that our system can produce.

PEAK SPL CALCULATOR
Speaker Sensitivity: dB SPL (2.83 V, 1 M)
Amplifier Power Per Channel into 8 Ohms: Watts
RESULTS
Peak Output Level (at typical listening position): dB SPL

 

This application note provides interactive examples that help to answer the questions listed above.

Read More